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Abstract

Rapid acquisition of high-resolution 2D and 3D NMR spectra is essential for studying biological mac-
romolecules. In order to minimize the experimental time, a non-linear sampling scheme is proposed for the
indirect dimensions of multidimensional experiments. These data can be processed using the algorithm
proposed by Dutt and Rokhlin (Appl. Comp. Harm. Anal. 1995, 2, 85–100) for fast Fourier transforms of
non equispaced data. Examples of 1H)15N HSQC spectra are shown, where crowded correlation peaks can
be resolved using non-linear acquisition. Simulated data have been used to analyze the artefacts produced
by the Lagrange interpolation. As compared to non-linear processing methods, this algorithm is simple and
highly robust since no parameters need to be adjusted by the user.

Abbreviations: LP – linear prediction; MEM – maximum entropy method.

Introduction

Multidimensional NMR is nowadays recognized
as a powerful technique for structural studies on
biological macromolecules. Resonance assignment
remains a prerequisite which involves the collec-
tion of a dozen of 3D or 4D triple-resonance
experiments (Tugarinov et al., 2002). In order to
resolve ambiguities due to accidental spectral
overlaps in the case of large proteins, two key
objectives can be identified: the digital resolution
along each dimension should be maximized as well
as the dimensionality of the spectra. As a result of
their joint realization, the protracted duration of
data-gathering process grows inexorably, while the
sample stability and the interspectral variation of
the chemical shifts may become an issue. In order

to retain high spectral resolution using short
measurement times, reduced dimensionality
experiments (Szyperski et al., 1993a, 1993b; Si-
morre et al., 1994; Brutscher et al., 1994), where
the frequency of two nuclei – or more – is identi-
fied along a single dimension, have been proposed
and processed with projection-reconstruction
methods (Kupce and Freeman, 2004). The last step
towards this direction, if sensitivity permits, relies
on single-scan multidimensional experiments
(Frydman et al., 2002) using pulsed field gradients.

While some NMR experiments exhibit per se a
limited sensitivity due to the multiple coherence
transfers (this is referred as the ‘‘sensitivity lim-
ited’’ data acquisition regime) (Szyperski et al.,
2002), the overall length of the other ones is mainly
dictated by the sampling of indirect (t1 ... )
dimensions (‘‘sampling limited’’ regime). Achiev-
ing high resolution for a wide spectral range is a
time-demanding constraint as a result of the
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Nyquist sampling theorem: it states that a signal
must be sampled at a rate m ‡ 2mmax, where mmax is
the Nyquist frequency, i.e. the highest frequency
detected in the spectrum. In contrast, the digital
resolution of the transformed spectrum is deter-
mined by the overall acquisition length in the time-
domain. A wide NMR spectrum will thus be well
resolved if a large number of points are collected at
a high rate. Besides, in a non-constant time
experiment, the effective S/N ratio is higher for the
initial points than for the last ones, however at the
same cost in terms of measuring time. Rovnyak
et al. (2004) have recently shown that the optimal
resolution in an indirect dimension would require
sampling up to �3 R2

)1 while the maximum sig-
nal/noise ratio is obtained for �1.2 R2

)1, where R2

refers to the relaxation rate of the nuclei in the
transverse plane. These rules are demanding at
higher fields because the spectral widths increase
while relaxation often exhibits little change.

In order to relax these two antinomic require-
ments, one can either numerically extend the ac-
quired signal or modify the acquisition scheme.
The first method called LP extrapolation (Tang
and Morris, 1988) is very routinely used in pro-
cessing 3D NMR spectra to reduce truncation
artefact, despite the fact that it may introduce false
peaks and frequency shifts (Stern et al., 2002). In
non-linear sampling schemes, a faster rate can be
used to record the first data points and a reduced
rate for the last ones, in an attempt to compromise
S/N ratio and resolution. For sake of clarity, we
will distinguish two types of non-linear sampling:
in the first one, the sampling grid of the linear
scheme is kept (ti ¼ kDt with k 2 N), but a
increasing number of points are omitted towards
the end of the signal (this method will be later
referred as the incomplete linear grid); a more
general non-linear scheme uses a continuously
varying pitch, where ti=a with a 2 R. In both
cases, the standard discrete Fourier transform
(DFT) algorithm may no longer be used and
alternative processing methods are required. In the
early days of NMR maximum entropy methods
(MEM) have been used by Barna et al. (1987) to
take advantage of a non-linear (exponential)
sampling scheme. More recently, Hoch and
coworkers (Hoch and Stern, 2001; Rovnyak et al.,
2003, 2004) have analyzed in detail MEM pro-
cessing of data sampled on an incomplete linear
grid. The three way decomposition method [as

implemented in the program MUNIN (Orekhov
et al., 2001)] could also be considered for such
data. In contrast, it should be mentioned that
other substitute to regular FT such as Burg MEM
algorithm, parametric linear prediction (LP)
(Gesmar and Led, 1989) or Filter Diagonalization
Methods (FDM) (Hu et al., 2000), does not seem –
to our knowledge – suitable for non-uniform
sampling in their current implementation.

The present paper would like to address the
following question: can NMR spectra acquired in a
non linear manner be ‘‘FT processed’’ as regular
ones? This question follows from the observation
that most spectroscopists strike a balance between
efficiency and complexity and are prone to favor a
less powerfulmethod if remarkably easier to handle.
As an example, MEM is less widely used than LP
interpolation (Stern et al., 2002), although the for-
mer has been reported as more reliable than the
latter. By nature, FT boils down to computing a
definite integral over a time variable, or numerically
to integrating a function over steps, which could be
chosen of arbitrary length. Generalized FT algo-
rithms are now available (see Potts et al., 1998 for a
review) to exploit or produce non-equispaced data,
without any iterative procedure. In this paper, we
investigate the potentialities and limitations of
NMR data sampled in a non-linear manner (con-
tinuously varying pitch) and processed with the FT
algorithm of Dutt and Rokhlin (1995).

Materials and methods

The outline of this generalized FT algorithm is the
following: a Lagrange interpolation is used to recast
the irregularly sampled FID into a regularly sam-
pled one which is then Fourier transformed in a
conventional manner. From a set of n-points, the
Lagrange method uses a interpolating polynomial
of degree n ) 1 that passes through the n data points
to compute the value of the function at any inter-
mediate value. Although described by Lagrange at
the end of the 18th century, the formula seems to
have been published earlier by Waring and Euler.

Let us consider a time-domain NMR signal
sampled up to time t=tmax. In NMR, no signal
exists prior to excitation and the origin of the time
scale is defined by convention at the beginning of the
detection (t ‡ 0). The signal ( fj, j = 1,…, N) is
sampled at N non-equispaced time points {x1,…,
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xN}. From this data set, we intend to compute a
regularly sampled FID (gi, i = 1,…,M) made ofM
points corresponding to time points {y1,…,yM},
with yi ¼ i� Dyþ t0. For simplicity, we will gen-
erally assume that y1 ¼ x1 and yM ¼ xN, but no
further requirement on the xi values has to be met
(this corresponds to the variable pitch acquisition
defined above). Data are interpolated over the
interval [y1, yM], but the algorithm could be slightly
modified to extrapolate data outside this interval.
Note that both { fj} and {gi} are complex signals.
The frequency domain spectrum is obtained by
regular fast FT from {gi} and phased using only a
constant phase correction if t0 ¼ y1 ¼ 0.

As a result of the periodic properties of discrete
FT, two conventions can be used for the input and
transformed data which result in indices running
over [0, 2k ) 1] or [)k+1, k]. Let us normalize the
time variables over the interval [)p,p] rather than
[0, tmax] by defining ~xj and ~yi as:

~xj ¼
2p
tmax
� xjþ p and ~yi ¼

2p
tmax
� yiþ p

Dutt and Rokhlin (1985) have shown that an
equispaced signal (gi; i ¼ 1; . . . , M) can be com-
puted form the original signal ( fj; j ¼ 1; . . . ,N)
using the following expression:

gi¼
�1ð Þi

N
�
XN

j¼1
f j �sin

N~xj
2

� �
� 1

tan ~xj�~yi
� �

=2
� �� i

 !

ð1Þ

where only the last symbol �i� refers to the square
root of )1. Readers should refer to the original
publication for the derivation of Equation (1). In
terms of numerical complexity, inspection of
Equation (1) shows that:

– all elements (except fj) only depend on the two
sampling grids. When a series of time domain
data are processed, these constant coefficients
can be evaluated only once.

– the computation of gi involves three arithmetic
operations: (1) a first scalar scaling of fj, (2) a
multiplication by a N · M matrix and (3) a final
scalar scaling.

An important feature of the algorithm is the
fact that Mmay differ from N. This means that the
dwell time of the generated FID can be adjusted
during the processing and is not irrevocably

defined at the acquisition. This important feature,
which permits to choose the spectral width after
acquisition, will be discussed later in the context of
the Nyquist sampling theorem.

The continuous Fourier transform is defined as
an integral:

G fð Þ ¼
Z1

�1

F tð Þ exp 2pi � ftð Þdt: ð2Þ

When it is replaced by a discrete Fourier trans-
form, the integral is substituted by a sum,

G fkð Þ ¼
XN�1

j¼0
F tj
� �

exp 2pi � fktj
� �

Dtj: ð3Þ

One can legitimately discard the various Dtj
coefficients, provided that they are equal, a state-
ment which is only valid for regularly sampled data.
In amore general case, theDtj coefficients should be
preserved. Before being processed through the
above mentioned Lagrange interpolation, the non-
linear sampled data were scaled according to the
actual length of the corresponding dwell time. This
preprocessing is analogous to the first data point
scaling by 0.5 in regular FT, as required when
acquisition starts at t1 or t2=0 (Otting et al., 1986).

This generalized FT method processes 1D
vectors of multidimensional NMR spectra and
with special benefits for indirect dimensions. Fur-
thermore, as the artefacts described below are
proportional to the signals, this method is less
suited for homonuclear correlation spectra such as
NOESY or TOCSY, because of strong diagonal
peaks. As a test case, 15N)1H HSQC spectra on a
15N labeled 124-residue protein were recorded on a
Varian INOVA 600 spectrometer. Among possible
non-linear acquisition schemes, we have chosen a
parabolic one: xj ¼ ð j� 1Þ2Dt0. The lack of any
transcendental function makes it easy to imple-
ment on any spectrometer. Spectra were processed
using nmrPipe software (Delaglio et al., 1995).
The generalized FT involves two subroutines
implemented as stand-alone C-programs that can
be inserted in the processing using the UNIX filter
philosophy of nmrPipe: the scaling of the data (in
order to take into account the variable dwell time)
and the Lagrange interpolation. The software is
available upon request from the author for various
UNIX platforms (SGI, MacOS, SUN, Linux).
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Results and discussion

Six HSQC experiments were recorded, which only
differ in the way the indirect dimension delay (t1) is
incremented. Table 1 summarizes the acquisition
and processing parameters for these experiments
labeled A–E and identified by means of the same
symbols (s, d, }, h, j, ) throughout the rest of
this paper. The timing of these acquisition schemes
are shown in Figure 1: (A, s), (B, d) and (C, })
correspond to a standard scheme with respectively
256, 64 and 64 data points and (D, h), (E, j) and
(F, ) to non linear (more specifically parabolic)
sampling with 256, 64 and 64 points. It should be
noticed that (i) scheme (E) is not a subset of (D) in
contrast to (B) with respect to (A) and (ii) the curves
for (D) and (E) intersect those associated with linear
sampling (respectively here at points 64 and 8). In
other words, such a general scheme leaves the spec-
troscopistmore or less free to choosewhen to sample
the data points, provided that enough points at the
very beginning (1/4 of the FID, in the present case)
are sampled faster than required by the Nyquist
theorem. If one switches from time- to frequency-
domain, the correct location of the peaks in the
spectrum (i.e. the lack for aliasing) is secured by the
fast sampled points at the beginning and the resolu-
tion of the individual signal (peak sharpness) by the
less frequent points at the end. The following dis-
cussion will contain three parts: (i) the spectra ob-
tainedby this newmethodwill be first comparedwith
standard techniques, (ii) the artefacts associatedwith
the data interpolation will be analyzed on simulated
data and (iii) a new feature provided with non-linear
sampling (the possible adjustment of the spectral
width when spectra are processed) will be discussed.

Comparison with other techniques

The length of the acquired signal t1
max is 0.121,

0.030, 0.483 and 0.236 s, respectively for schemes
(A), (B), (D), (E), but the global experimental time
of (A) and (D) is four times longer than (B) and
(E). The data sets have been processed as shown in
Table 1, (A, s), (B, d) using regular FT, (C, })
using 2D-maximum entropy reconstruction
(MEM) without deconvolution and (D, h), (E, j)
and (F, ) using the Lagrange interpolation along
t1. Sets D, E and F cannot be processed using
MEM reconstruction which generally involves an
inverse DFT of the data (Stern et al., 2002) and
are only suited for data sampled on an incomplete
linear grid. The spectral region corresponding to
the side-chain NH2 are shown in Figure 2, to-
gether with an expansion of two overlapping sig-
nals. In the upper part of Figure 2 are displayed
the ‘‘linear’’ spectra (a, b and c) and in the lower
one the non-linear data sets (d, e and f). All spectra
were plotted with the same first contour level
(±106) except d and e (at ±0.2 · 106).

The spectra obtained with these different tech-
niques are graded in terms of resolution (line-width
and peak position accuracy) and sensitivity (peak
amplitude, noise level). The contour plots shown in
Figure 2 evidence that spectrum d (256 points –
non-linear sampling) is the best resolved followed
by spectrum e (64 points – non-linear sampling).
These spectra correspond to tmax

1 = 0.483 s and
0.236 s, respectively. The two data sets recorded in
a standard manner with the same number of data
points (Figure 2a and b) exhibit markedly lower
resolution. When processed by MEM, some reso-
lution can be partially recovered for the latter data

Table 1. Summary of the experiments discussed in the text.

Experimenta Acquisition Processing Data pointsb Scansc Total spectrometer timed

A s Linear FT 256 1· 1

B d Linear 64 1· 1/4

C } Linear 2D-MEM 64 1· 1/4

D h Non-linear Lagrange interpolation + FT 256 1· 1

E j Non-linear 64 1· 1/4

F Non-linear 64 4· 1

aThe same symbol (or letter) is used for an experiment throughout this paper, i.e. in the definition of the acquisition scheme (cf.
Figure 1), for the contour plots shown in Figure 2 and for the quantification of the spectral parameters (cf. Figure 3).
bNumber of complex pairs (as required for quadrature detection).
cThis indicates how many times the minimal phase cycling has been repeated for a given t1 increment.
dAll overall experimental times are arbitrarily scaled relative to experiment A.
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set (cf. Figure 2c vs. b). From this survey, one
concludes that resolution is determined by the tmax

1

value rather than the actual number of sampled
data points, if these two parameters can be dis-
connected. The resolution enhancement provided
by non-linear sampling is not associated with peak
distortions as commonly seen with strong apodi-
zation. One-dimensional traces show that the neg-
ative tails on either edge of the peaks are less
pronounced, since the apodization window is
shifted towards longer t1 increments.

The nmrDraw program was used for analyzing
these spectra (Delaglio et al., 1995): the noise
levels are given in Figure 2 caption and the
position, line-width and height of 18 peaks
reported in Figure 3(b, c and d). Let us first discuss
the position of the peaks (chemical shift). For
convenience, the position in each spectrum has
been compared to the best resolved set (256 non-
linear h) and reported in Figure 3(a). The position

derived from the non-linear schemes are clearly
not biased with respect to standard FT technique.
The variations shown for peaks #5 and #6 can be
easily rationalized by the fact that the peak picking
routine is not able to distinguish them for low
resolution spectra and thus report a common
average value. Note that position fluctuations for
the MEM processing are much larger, but this
point is clearly beyond the scope of this paper.

We now turn to the noise levels in the various
spectra. Different processing may introduce
inconsistent scaling of the data (the coefficients
involved in the definition of FT vary from one
author to another) and the noise level is a sound
basis for comparison. The noise ratio between
spectra 2a and 2b is close to 2.0, as expected
from the experimental time and the number of
increments (4·). In contrast, spectrum 2d recorded
in the same experimental time as 2a contains about
30% more noise: because noise contributes equally
to all points of a free induction decay (even if the
signal varies), acquiring data points at longer t1
values, as done in the non-linear scheme, does not
modify the absolute noise level. Consequently this
additional noise is introduced by the processing due
to the errors introduced by the Lagrange interpo-
lation. Because the damped sinusoids are approxi-
mated as polynomials, part of the signal is displayed
at an incorrect frequency and turns into noise.

The peak heights (Figure 3d) and line-widths
(Figure 3c) are now dissected. The term ‘‘line-
width’’ does not refer to the natural spectral line-
width of the peak but to the digital one, which is
usually larger in indirect dimensions. A single
lorentzian line is characterized by its integral, which
is proportional to the product of the peakheight and
its line-width. Because it is related to the first data
point in the time-domain (t1=0), the integral
remains constant in the Fourier transformed spec-
trum, when the experimental number of points
varies. Consequently, the peak height and line-
width vary in opposite manner depending upon the
digital resolution, provided that the FT implemen-
tation does not contain hidden scaling factors. Such
an anticorrelated variation is observed for the linear
acquisition (cf. d, s in Figure 3) where the peak
heights increase by a factor of 3 when 256 points
instead of 64 are acquired, while the line-widths
decrease by the same amount. When comparing
linear with non-linear data acquired in the same
amount of experimental time (256 linear s vs. 64

Figure 1. Sampling schemes (t1 increment value vs. experimental
pairs of data points) used for the indirect dimensions of 1H)15N
HSQC: Schemes a and b show a standard linear acquisition
[tj=( j)1)Dt] and schemes d and e a non-linear one
[ti ¼ ðj� 1Þ2�t0]. Note that the later schemes correspond to
continuously varyingpitches, as defined in the text. SeeTable 1 for
more details and the definition of the various symbols (d, s, j,

, h, }). For each t1 increment, two data points are sampled to
lead to a complex signal and permit quadrature detection.
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non-linear (4· scans) ), a similar line-width is ob-
tained associated with a slight decrease of the peak
height for the non-linear experiment (compare the
corresponding spectra in Figure 2a and e). Corre-
lation plot of the products (height · line-width) of
the peaks have been drawn (data not shown) to
compare the various schemes. If the peaks which
cannot be discriminated by the peak picking rou-
tines are discarded (peaks #5, #6, #14 and #16 in
Figure 3a), a correlation coefficient greater than
0.98 is found; compared to the 256–linear data set
(s), the products (height · line-width) are scaled by
0.22 and 0.70 for the 256–non-linear (h) and the 64
non-linear (4· scans) ( ) respectively, although the
acquisition of the 3 sets requires the same amount
of spectrometer time.

Two conclusions can be drawn from this
analysis: (i) the good correlation coefficient shows
that the non-linear processing does not introduce
any bias in the evaluation of peak heights and line-
widths (apart from a global scaling) and is thus
suitable for quantitative NMR. (ii) The price to
pay in terms of sensitivity for using a non-linear
sampling remains moderate, with a 30% increase
of the noise and a similar decrease of the peak
height. If the intrinsic sensitivity of the experiment
permits, a much higher resolution (Figure 3c) can
be obtained with non-linear sampling (compare j

and d, h and s) while sacrifying intensity
(Figure 3d) for a constant spectrometer time.
Depending upon the goal in terms of resolution
and sensitivity, the non-linear schemes can be

Figure 2. 1H)15N HSQC spectra of protein SufA from E. coli (Ollagnier-de Choudens et al., 2003), a protein involved in Fe–S cluster
biosynthesis. Spectra shown in insets a, b and c have been obtained with corresponding linear sampling schemes a, b and c (cf.
Figure 1) (F1 spectral width = 2100 Hz) and spectra in insets d, e and f with non-linear schemes d, e and e. The same number of scans
per increment is used for all spectra, except for f where it was multiplied by 4: the global experimental time is thus identical for spectra
a, d and f as well as for b, c and e. Both positive and negative contour levels are plotted, starting at 106 for a, b, c, f and 0.2 · 106 for d
and e. For reference, the noise level is respectively 13.7, 6.4, 17.6 and 19.7 · 103 for spectra a, b, d and e (evaluating the noise is not
relevant for MEM spectra). For each spectrum, an expansion of the partially overlapping cross-peaks at (1H,15N) � (7.5 ppm,
112.4 ppm) is shown. Spectra a and b have been processed with regular FFT (a 0.2 · p shifted sine-bell was used to avoid truncation
effect), c using 2D MEM reconstruction (as implemented in nmrPipe) and d, e, f using non-linear FT (this algorithm) along F1. Data
were acquired on a INOVA-600 MHz using Varian BioPack pulse sequence without any modification.
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optimized as shown from the comparison of the
256- and 64 non-linear sets.

Artefacts due to interpolation

Because no processing technique is actually devoid
of artefacts, it is essential to characterize them for
lack of being able to suppress them completely. For
instance, it is common practice to tolerate some

weak ‘‘sinc wiggles’’ in FT spectra, in order to pre-
serve the information contained in the last data
points of the FID. In order to characterize the
artefacts introduced by the Lagrange interpolation,
time-domain data containing a single decaying fre-
quency have been generated and processed with our
technique (cf. Figure 4). Here the decay rate and the
frequency of the signal have beenmodifiedwhile the
acquisition scheme is kept unchanged (SchemeD, as

Figure 3. Comparison of the spectral parameters for 18 cross-peaks in the various 1H)15N HSQC spectra shown in Figure 2. The
peaks are numbered in inset (a) on the same spectrum as Figure 2 d. All spectra were zero-filled to 2048 complex points in F1 (spectral
width = 2100 Hz) to yield to the same digital resolution (points/Hz) and thus permit a direct comparison. These spectral parameters
have been obtained using the peak picking routine implemented in the program nmrDraw (Delaglio et al., 1995) without any editing.
Circles (d, s) correspond to regular FT, squares (h, , j) to non-linear FT and diamond (}) to MEM processing, as defined in
Table 1. The chemical shift variations (in data points), the line widths (in data points) as well as the peak heights are plotted in
Figure 3(b, c and d), respectively. The peaks heights (Figure 3) and the contour levels (Figure 2) are reported in the same arbitrary
units. The chemical shift variations (inset b) are expressed as a difference with respect to the best resolved spectrum (i.e. non-linear
acquisition of 256 points). The large chemical shift fluctuation for peaks #5 and #6 results from their partial overlap, which prevents
the peak-picking routine from correctly discriminating them. The peak heights obtained from MEM processing are apparently scaled
by a constant factor with respect to the other spectra.
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defined in Table 1). With this acquisition scheme,
more data points have to be interpolated at the end
of the FID on the basis of fewer experimental
samples: it is therefore anticipated that broad and
narrow signals may be affected differently, as well as
low- and high-frequency peaks.

Spectra shown in Figure 4(a, b, c and d) illus-
trate how the interpolation performs when the
signal becomes broader [for sake of clarity, a ver-
tical expansion of spectrum (c) is reproduced in
(c¢)]. These 4 signals have the same integral and
thus their amplitude decreases as the line-width
increases. One should first notice that the base-line
in the direct neighborhood of the signal remains
perfectly flat and that the artefacts are clustered
further away from the peak. Though these signals
exhibit the same integral, the artefact amplitude is
clearly larger for a narrow signal (spectrum a).
However, the amplitude ratio (artefact/peak) re-
mains constant (about 10%) for a wide range of
line-width. The larger artefact amplitude in a vs. d
is clearly related to the fact that the interpolation
process is more demanding for slowly vanishing
signals. Let us discuss the artefact pattern by
comparing spectra c¢ and a: when the signal is still
reasonably broad, the Lagrange interpolation
leads to a simple oscillation (in the frequency do-
main) which amplitude smoothly increases as one
moves away from the peak. For narrow signal, a
more complex oscillation (i.e. with higher fre-
quencies) is observed and the transition becomes
sharper. If one now focuses on signals at higher
frequency (spectrum f vs. c), the artefact retains
the same amplitude for a given line-width, but the
oscillation pattern contains more components for
high-frequency signal. Its maximum amplitude
occurs roughly at m±Dm/2, where m is the signal
frequency and Dm the reconstructed spectral width.
When white noise is added to the time-domain
data (Figure 4e), it adds to the oscillation artefact
in a uniform manner, i.e. the standard deviation is
the same at any location in the spectrum.

In conclusion, these simulations show that the
Lagrange interpolation introduces some artefacts,
because approximating a sinusoid function by a
polynomial – even of high order – remains a crude
approximation. The artefacts never occur in the
direct vicinity of the true peak; they are made of
more or less complex baseline oscillations with a
amplitude less than 10%of themain peak, whatever
its line-width is. The experimental noise adds to

these artefact without introducing any bias. Al-
though their presence remains annoying, these ar-
tefacts cannot be mixed up with real peaks because
of their very specific shape. Amore detailed artefact
analysis for different acquisition schemes are cur-
rently in progress. These simulations show that this
method is more suitable for heteronuclear correla-
tion spectra (which contain peaks of similar ampli-
tude but no diagonal peaks) than for homonuclear
NOESY spectra (with a high dynamic range).

Adjustment of the spectral width

The Lagrange interpolation applied to non-linearly
sampled signals allows one to modify the spectral

Figure 4. Evaluation of artefacts on simulated data. Time
domain data containing a single decaying frequency S(t) = exp
(i2�tÞ � expð�t=T2) were generated using sampling scheme (a)
(cf. Table 1). The time-domain decay rate corresponds to a
signal line-width of 2 points (spectrum a), 3.5 points (b), 11
points (c, e and f) and 33 points (d). In all spectra (except F), the
signal is centered on the carrier frequency, while it is shifted to
the edge of the spectrum in (f). Spectrum (e) is similar to
spectrum (c), except for the white noise added to the simulated
data (the amplitude of the noise is 10% of the magnitude of the
first data point in the time-domain). Spectrum (c¢) shows a
vertical expansion of spectrum (c) (5·).
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width during processing and adjust it to fit the
spectral requirements. In the previous statement, we
only refer to the scheme called the continuously
varying pitch. If one recalls the Nyquist sampling
theorem quoted earlier, it might seem at first glance
that the spectral width is irreversibly encoded by the
dwell time chosen at the acquisition. This golden
rule is known byNMR spectroscopists who have all
experienced one day or another the effect of signal
aliasing: in such situations, the peaks which should
fall outside of the chosen spectral width are ‘‘folded
back’’ into the spectrum and generally identified by
their phase distortion, if the acquisition timing has
been slightly delayed.

Equation (1) shows that the number of com-
plex points (M) computed using the Lagrange
interpolation can be chosen freely and is not re-
lated to the amount of sampled points (N). A data
set acquired using the timing shown in Figure 1(d)
(j) has been processed in 3 different manners and
contour plots with the entire spectral width in F1

(15N) are displayed in Figure 5. The data were
interpolated using respectively 256 pairs (inset c),
512 (b) and 1024 (a). In contrast to linear sampling
where they are folded back at an apparently
incorrect frequency, the signal at higher frequen-
cies are spread over the entire spectrum and
averaged out. This smearing is very analogous to
that observed in NOESY spectra, where a random
variation of the length of the mixing time is used to
suppress the zero-quantum contribution (Macura
et al., 1981).

Why the peaks at higher frequencies behave
differently in linear and non-linear sampling can be
rationalized in the following manner. The aliasing
observed with classical FT is due to the lack of any
information in the FID, which can provide the
authentic frequency of the folded signal: all the
digitized samples for two signals oscillating at m0
and m0 þ mmax (where mmax is the Nyquist frequency)
exactly coincide. In contrast, in the present method,
the pitch (i.e. the spacing) between the digitized
samples varies continuously: if two arbitrary fre-
quencies are considered, m1 and m2, the amplitude of
a signal of normalized intensity may be accidentally
identical for a few data points, but not for all of
them. This intuitively explains the key difference
between the two techniques, as far as the behavior of
higher frequency signal is concerned.This statement
deserves two additional comments: (i) the lack of
periodicity between any frequency and the sampling

grid is only true for the continuously varying pitch,
(ti 2 R) but not for the incomplete linear grid
method (ti=kDt with k 2 N). (ii) one should not
trust outward appearances that the Nyquist theo-
rem might be violated in the present case: the first
data points have to be sampled faster than stated by
this theorem for the largest frequency of interest.

Figure 5. Comparison of different processing of the same data
set recorded using non-linear acquisition. The Lagrange inter-
polation (see material and methods) allows the computation of
an equispaced FID of M complex data points from a non-
equispaced FID of N complex points. A 1H)15N HSQC
spectrum was acquired with the non-linear scheme shown in
Figure 1a (N=256 · 2 points) and interpolated to M=
1024 · 2 points (inset a), 512 · 2 points (inset b) and 256 · 2
points (inset c). The 3 spectra are plotted with the same contour
levels (positive + negative) and with the full 15N spectral
width. When compared to the normal 15N spectral width
required with a linear acquisition scheme (SW1=2100 Hz), the
apparent spectral widths are respectively 525 Hz (inset a)
1050 Hz (inset b) and 2100 Hz (inset c). Noise ridges parallel to
F1 (see text) are visible (on the lower right-hand corner of c) as a
result of the approximation of sinusoids by polynomials.
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Conclusions

In summary, the continuously varying pitch
method, combined with the Lagrange interpola-
tion [as implemented according to Dutt and
Rokhlin (1995)] provides better resolved spectra
than classical methods, for a given amount of
experimental time. The first fast sampled data
points allows to identify correctly the global po-
sition of the peaks while the points sampled for
longer increments at a lower rate leads to precise
frequency characterization. We have shown that
this rather robust method does not require any
parameter adjustment (in contrast to other itera-
tive methods) except the choice of the spectral
width of interest. It does not introduce any salient
bias in the derived spectral parameters and the
price to pay in terms of sensitivity is moderate. In
addition to random noise, some systematic oscil-
lation ridges come in sight shifted by half of the
spectral width with respect to the original peak,
because the approximation of damped sinusoids
by polynomials is not perfect. Further analysis of
these artefacts will be discussed elsewhere.
Combined with cryogenic probes, this method
could be implemented in any indirect dimension of
(reduced dimensionality) 3D and 4D experiments
to speed up acquisition on perdeuterated proteins.
Other applications involve kinetics measurements,
fast recording of 2D experiments of small organic
compounds or even correction of corrupted data
due to ADC overflow.
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